
Classes and Constructors

A constructor for a class has an access attribute (such as public) but no
return type, not even void. As in Python and any other object-
oriented language, the job of a constructor is to initialize the instance
variables of the class.

In Java the name of a constructor is the same as the name of its class –
class Student will have a constructor Student().

You can have multiple constructors for a class as long as they have different
arguments. For example, here is a class with three constructors:
public class Person {

String name;
int age;

public Person(String who, int a) {
name = who;
age = a;

}
public Person(String who) {

name = who;
age = 0;

}
public Person() {

name = “bob”;
age = 69;

}

We can simplify the use of multiple constructors and the names of
constructor arguments with the keyword this, which always refers to
the current class. When used as a method, this takes the place of one
of the constructors of a class. So the second and third constructors of
our Person class could be written

Person(String who) {
this(who, 0);

}
Person() {

this(“bob”, 69);
}

If we wrote the last constructor as Person(“bob”, 69) that would be an
error.

Here’s another use of the word this. Class Person has an attribute
name; in the constructor we used who for the corresponding
argument. We could have used name for the argument to the
constructor. Then inside the constructor name refers to the argument
and this.name refers to the class variable.

Putting all of this together, here is how I would write this class:
public class Person {

String name;
int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}
public Person(String name) {

this(name, 0);
}
public Person() {

this(“bob”, 69);
}

Here are some additional methods for class Person:
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}
public int getAge() {

return age;
}
public void setAge(int age) {

this.age = age;
}

public void birthday() {
age += 1;

}

// Here is a main method:

public static void main(String[] args) {
Person x = new Person("bob");
x.setAge(69);
x.birthday();
System.out.println(x.getAge());

}

Here is a subclass of Person. Note that the subclass extends the parent class.

public class Student extends Person {
double gpa;

public Student(String name) {
super(name); // calls the Person constructor
gpa = 4.0;
setAge(18);

}

Here are some more methods of class Student:
public double getGPA() {

return gpa;
}

public void setGPA(double g) {
gpa = g;

}
public static void main(String[] args) {

Student x = new Student("Hermione");
x.setAge(20);
System.out.println(x.getName());

}
These are methods of class Student but not class Person. On the other hand,
all methods of class Person are also methods of class Student.

